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1. The lognormal distribution arises in various different con
texts such as Physics (distribution of small particles). Economics
(income distribution), Biology (growth of organisms), etc. A com
prehensive treatment of lognormal distribution has been given by
Aitchison and Brown [1], Epstein [5], Brownlee [3], Delaporte [4],
Moroney [9] describe applications of lognormal distribution to
physical and industrial processes, textile research and quality
control. In the context of life testing problems, the lognormal
distribution answers a criticism sometimes raised against the use of
normal distribution (ranging from" -oo to +oo) as a model for
failure time distribution which must range from 0 to oo.

Consider the lognormal probability density function (pdf)

1
fix 1 Xo, (i., 0-)=

Vina (x—xo)

exp 1--^ (log (a:-Xo)--!J.)2 x:>Xo ...(I)

Hill [7J has shown that there exists paths along which the
likelihood function of a sample

(xi, Xg, ... x„)^oo as (xo, (i., <^)->{:X(i,, -00,00}

where X(i) is the smallest of the x< and hence [in a meaningful sense]
these are the maximum likelihood estimators. Giesbrecht and
Kempthorne [6] obtained the maximum likelihood estimators when
the data from the pdf (1) are grouped. Sinha [10] suggested an
easy way to compute moment estimators.
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Assuming Xo known, we will study the robustness of Bayes
estimators of ct) and the corresponding posteriors when one
has little or vague prior information about the parameters. In such

situations Jeffreys [8] proposed the prior p(e)oc | 7(0) where 7(0) is
Fishev's information matrix. Use of JefiFreys prior has resulted in a
number of interesting and well known estimators.

Let

We have

:v-:vo=}'.
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% I ^ o)=———

V 2ts cry

exp
2a2

[(log J>0.

It is easy to show that Jeffreys prior p ((x, o)ac~-

Consider the class of 'improper' or 'quasi' priors p ([x, o')oc—,

<T, c>0. Given the data y ={yi. yz, ... y„), the likelihood func
tion L ((X, or I^ ), and the prior p ([x, a) and making use of Bayes
theorem [2], we have the posterior distribution

n ([X, CT ljO=K p ((X, a) Z,([X, or Iy)

where T?' is a normalizing constant.

2. Thejoint posterior of (|x, a) is given by
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n I exp j—^ 2 Cog (

(-^)
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The marginal posterior of o is given by

n
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and similarly
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an expression independent of c, which shows that under the joint

prior p{[i, a) oc—, Bayes estimator of [x is uniformly robust for

changes in c but that of a is less so.

Arandom sampl^of 50 was generated from the pdf(l) with
Xo=6.Q, |j.= -1.0, a=0.5.

Using (2) and (3) we obtain Bayes estimators a*, y*.

c a* .

1 0J77

2 0.571

3 0.565

4 0.560

M™-^Lo97Max(o-»)

True o-=0.5. (a*= —1.054. True [x=—1.0.

The posteriors n((T | j; ) and n((A | are plotted in figures 1 and 2.
The estimates a* and [x* justify the patterns of the corresponding
posteriors.
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